
eAppendix for "A uni�cation of mediation and interaction: a four-way
decomposition" by Tyler J. VanderWeele

1. Continuous Outcomes and Linear Regression Models

1.1 Continuous Outcome, Continuous Mediator

For Y and M continuous, under assumptions (i)-(iv) and correct speci�cation of the
regression models for Y and M :

E[Y ja;m; c] = �0 + �1a+ �2m+ �3am+ �
0
4c

E[M ja; c] = �0 + �1a+ �
0
2c;

VanderWeele and Vansteelandt4 and VanderWeele34 showed that the average controlled di-
rect e¤ect, the pure indirect e¤ect, and the mediated interaction conditional on covariates
C = c were given by:

E[CDE(m�)jc] = (�1 + �3m
�)(a� a�)

E[PIEjc] = (�2�1 + �3�1a
�)(a� a�)

E[INTmedjc] = �3�1(a� a�)(a� a�):

They also showed that the pure direct e¤ect was given by E[PDEjc] = f�1+ �3(�0+�1a�+
�02c)g(a � a�). The reference interaction is then given by di¤erence between the the pure
direct e¤ect and the controlled direct e¤ect:

E[INTref (m
�)jc] = f�1 + �3(�0 + �1a� + �02c)g(a� a�)� (�1 + �3m�)(a� a�)

= �3(�0 + �1a
� + �02c�m�)g(a� a�):

Standard errors for these expressions could be derived using the delta method along the lines
of the derivations in VanderWeele and Vansteelandt4 or by using bootstrapping.

1.2 Continuous Outcome, Binary Mediator

For Y continuous and M binary, under assumptions (i)-(iv) and correct speci�cation of
the regression models for Y and M :

E[Y ja;m; c] = �0 + �1a+ �2m+ �3am+ �
0
4c

logitfP (M = 1ja; c)g = �0 + �1a+ �
0
2c:

Valeri and VanderWeele16 show that the average controlled direct e¤ect and the average pure
indirect e¤ect are given by:

E[CDE(m�)jc] = (�1 + �3m
�)(a� a�)

E[PIEjc] = (�2 + �3a
�)f exp[�0 + �1a+ �

0

2c]

1 + exp[�0 + �1a+ �
0
2c]
� exp[�0 + �1a

� + �
0

2c]

1 + exp[�0 + �1a
� + �

0
2c]
g:
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The reference interaction is given by the di¤erence between the pure direct e¤ect and the
controlled direct e¤ect, which were both given by Valeri and VanderWeele16:

E[INTref (m
�)jc] = f�1(a� a�)g+ f�3(a� a�)g

exp[�0 + �1a
� + �

0

2c]

1 + exp[�0 + �1a
� + �

0
2c]
� (�1 + �3m�)(a� a�)

= �3(a� a�)
 

exp[�0 + �1a
� + �

0

2c]

1 + exp[�0 + �1a
� + �

0
2c]
�m�

!

The mediated interaction is given by the di¤erence between the total indirect e¤ect and the
pure indirect e¤ect, which were also both given by Valeri and VanderWeele16:

E[INTmedjc] = (�2 + �3a)f
exp[�0 + �1a+ �

0

2c]

1 + exp[�0 + �1a+ �
0
2c]
� exp[�0 + �1a

� + �
0

2c]

1 + exp[�0 + �1a
� + �

0
2c]
g:

�(�2 + �3a�)f
exp[�0 + �1a+ �

0

2c]

1 + exp[�0 + �1a+ �
0
2c]
� exp[�0 + �1a

� + �
0

2c]

1 + exp[�0 + �1a
� + �

0
2c]
g

= �3(a� a�)f
exp[�0 + �1a+ �

0

2c]

1 + exp[�0 + �1a+ �
0
2c]
� exp[�0 + �1a

� + �
0

2c]

1 + exp[�0 + �1a
� + �

0
2c]
g:

2. Decomposition on a Ratio Scale and Logistic Regression Models

2.1. Four-way Decomposition on a Ratio Scale

From Proposition 1 in the text we have Ya � Ya�

= (Yam� � Ya�m�) +
X

m
(Yam � Ya�m � Yam� + Ya�m�)1(Ma� = m)

+
X

m
(Yam � Ya�m)f1(Ma = m)� 1(Ma� = m)g+ (Ya�Ma � Ya�Ma� ):

Taking expectations conditional on C = c gives: E(Ya � Ya�jc)

= E(Yam� � Ya�m�jc) +
X

m
E[(Yam � Ya�m � Yam� + Ya�m�)1(Ma� = m)jc]

+
X

m
E[(Yam � Ya�m)f1(Ma = m)� 1(Ma� = m)gjc] + E(Ya�Ma � Ya�Ma� jc):

Under assumption (iv) this is: E(Ya � Ya�jc)

= E(Yam� � Ya�m�jc) +
X

m
E(Yam � Ya�m � Yam� + Ya�m�jc)P (Ma� = mjc)

+
X

m
E(Yam � Ya�mjc)fP (Ma = mjc)� P (Ma� = mjc)g+ E(Ya�Ma � Ya�Ma� jc):

and dividing by E(Ya�jc) gives:

RRTEc � 1 = �
�
RRCDEc (m�)� 1

�
+ �RR

INTref
c (m�) + �RRINTmedc + (RRPIEc � 1)
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where RRTEc = E(Yajc)
E(Ya� jc)

, � = E(Ya�m� jc)
E(Ya� jc)

, and

RRCDEc (m�) =
E(Yam�jc)
E(Ya�m�jc)

RR
INTref
c (m�) =

X
m
RERI(a�;m�)P (Ma� = mjc)

RRINTmedc =
X

m
RERI(a�;m�)fP (Ma = mjc)� P (Ma� = mjc)g

RRPIEc =
E(Ya�Majc)
E(Ya�Ma� jc)

with RERI(a�;m�) =
�

E(Yamjc)
E(Ya�m� jc)

� E(Ya�mjc)
E(Ya�m� jc)

� E(Yam� jc)
E(Ya�m� jc)

+ 1
�
. Under assumptions (i)-

(iii) we also have E(Yajc) = E(Y ja; c), E(Yamjc) =
X

m
E[Y ja;m; c]P (mja; c) and thus

and P (Ma = mjc) = P (M = mja; c) and thus the right hand side of the equalities
above would be identi�ed from the data. VanderWeele34 also showed that �RRINTmedc =

�
X

m
RERI(a�;m�)fP (Ma = mjc)�P (Ma� = mjc)g =

�
E[YaMa jc]
E[Ya�Ma� jc]

� E[YaMa� jc]
E[Ya�Ma� jc]

� E[Ya�Ma jc]
E[Ya�Ma� jc]

+ 1
�

and called this latter term RERImediated.
Note also under assumption (iv), (RRPIEc � 1) can be rewritten as

(RRPIEc � 1) =

�
E(Ya�Majc)
E(Ya�jc)

� E(Ya
�jc)

E(Ya�jc)

�
=

�

E(Ya�m�jc)fE(Ya
�Majc)� E(Ya�jc)g

=
�

E(Ya�m�jc)
X

m
fE[Ya�mjc]� E[Ya�m�jc]gfP (Ma = mjc)� P (Ma� = mjc)g

= �
X

m

�
E(Ya�mjc)
E(Ya�m�jc) � 1

�
fP (Ma = mjc)� P (Ma� = mjc)g

= �
X

m

E(Ya�mjc)
E(Ya�m�jc)fP (Ma = mjc)� P (Ma� = mjc)g

The proportion attributable to each of the four components is then obtained by simply
dividing each of the four components in the display equation above by their sum as in Table
2. A similar decomposition could likewise be carried out on an additive scale using hazard
ratios.
By similar arguments to those above but applied to Propositions 2 and 4, if assumption

(iv) did not hold but assumptions (i)-(iii) all did hold, we would have that (RRTEc � 1)
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decomposed into the product of � and the sum of:

RRCDEc (m�)� 1 = E[Y ja;m�; c]

E[Y ja�;m�; c]
� 1Z

RERI(a�;m�)dP (Ma�jc)

=

Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

� E[Y ja;m�; c]

E[Y ja�;m�; c]
+ 1gdP (mja�; c)Z

RERI(a�;m�)fdP (Majc)� dP (Ma�jc)

=

Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

gfdP (mja; c)� dP (mja�; c)gZ
E[Ya�mjc]
E[Ya�m�jc]fdP (Majc)� dP (Ma�jc)g =

Z
E[Y ja�;m; c]
E[Y ja�;m�; c]

fdP (mja; c)� dP (mja�; c)g:

2.2 Binary Outcome, Continuous Mediator

Suppose Y were binary and M continuous, that assumptions (i)-(iv) held, that the out-
come is rare, and that the following regressions were correctly speci�ed:

logit(P (Y = 1ja;m; c)) = �0 + �1a+ �2m+ �3am+ �
0
4c

E[M ja; c] = �0 + �1a+ �
0
2c:

with M normally distribution conditional on (A;C) with variance �2. Suppose that the
outcome is rare so that odds ratios approximate risk ratios. VanderWeele and Vansteelandt5

derived expressions for the controlled direct e¤ect, the pure indirect e¤ect, and the pure
direct e¤ect, all on the risk ratio scale. The total e¤ect, controlled direct e¤ect, and pure
indirect e¤ect were given approximately by:

RRTEc � exp[�1 + �2�1 + �3(�0 + �1a
� + �1a+ �

0
2c+ �2�

2)g(a� a�) + 1
2
�23�

2(a2 � a�2)]

RRCDEc (m�) � exp[(�1 + �3m
�)(a� a�)]

RRPIEc � exp[(�2�1 + �3�1a
�)(a� a�)]

where the approximations (here and below) hold to the extent that the outcome is rare. We
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have that � = E(Ya�m� jc)
E(Ya� jc)

is given by:

� =
E(Ya�m�jc)
E(Ya�jc)

=
E[Y ja�;m�; c]Z

E[Y ja�;m; c]dP (mja�; c)

� exp(�0 + �1a
� + �2m

� + �3a
�m� + �04c)

expf�0 + �1a� + �04cg
Z
expf(�2 + �3a�)mgdP (mja�; c)

=
exp(�2m

� + �3a
�m�)

expf(�2 + �3a�)(�0 + �1a� + �02c) + 1
2
(�2 + �3a�)2�2g

= e�2m
�+�3a�m��(�2+�3a�)(�0+�1a�+�02c)� 1

2
(�2+�3a�)2�2 :

We have
Z

E[Y ja;m;c]
E[Y ja�;m�;c]dP (mja

y; c)

�
Z
exp(�1a+ �2m+ �3am� �1a� � �2m� � �3a�m�)dP (mjay; c)

= expf�1(a� a�)� �2m� � �3a�m�g
Z
expf(�2 + �3a)mgdP (mjay; c)

= expf�1(a� a�)� �2m� � �3a�m�g expf(�2 + �3a)(�0 + �1ay + �02c) +
1

2
(�2 + �3a)

2�2g

= e�1(a�a
�)��2m���3a�m�+(�2+�3a)(�0+�1a

y+�02c)+
1
2
(�2+�3a)2�2 :

The reference interaction is thus given by:

RR
INTref
c (m�) =

Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

� E[Y ja;m�; c]

E[Y ja�;m�; c]
+ 1gdP (mja�; c)

= e�1(a�a
�)��2m���3a�m�+(�2+�3a)(�0+�1a

�+�02c)+
1
2
(�2+�3a)2�2

�e��2m���3a�m�+(�2+�3a�)(�0+�1a
�+�02c)+

1
2
(�2+�3a�)2�2 � e(�1+�3m�)(a�a�) + 1

and the component due to the reference interaction �RRINTrefc (m�) by:

ef�1+�3(�0+�1a
�+�02c+�2�

2)g(a�a�)+ 1
2
�23�

2(a2�a�2) � 1
�e�1(a�a�)+�2m�+�3am��(�2+�3a�)(�0+�1a�+�02c)� 1

2
(�2+�3a�)2�2

+e�2m
�+�3a�m��(�2+�3a�)(�0+�1a�+�02c)� 1

2
(�2+�3a�)2�2
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The mediated interaction is given by:

RRINTmedc =

Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

gfdP (mja; c)� dP (mja�; c)g

� e�1(a�a
�)��2m���3a�m�+(�2+�3a)(�0+�1a+�

0
2c)+

1
2
(�2+�3a)2�2

�e��2m���3a�m�+(�2+�3a�)(�0+�1a+�
0
2c)+

1
2
(�2+�3a�)2�2

�e�1(a�a�)��2m���3a�m�+(�2+�3a)(�0+�1a
�+�02c)+

1
2
(�2+�3a)2�2

+e��2m
���3a�m�+(�2+�3a�)(�0+�1a

�+�02c)+
1
2
(�2+�3a�)2�2 :

and the component due to the mediated interaction �RRINTmedc by:

ef�1+�2�1+�3(�0+�1a
�+�1a+�

0
2c+�2�

2)g(a�a�)+ 1
2
�23�

2(a2�a�2)

�e(�2�1+�3�1a�)(a�a�) � ef�1+�3(�0+�1a�+�02c+�2�2)g(a�a�)+ 1
2
�23�

2(a2�a�2) + 1:

We also have that the component due to controlled direct e¤ect is:

�
�
RRCDEc (m�)� 1

�
= �[e(�1+�3m

�)(a�a�) � 1]
= e�1(a�a

�)+�2m�+�3am��(�2+�3a�)(�0+�1a�+�02c)� 1
2
(�2+�3a�)2�2

�e�2m�+�3a�m��(�2+�3a�)(�0+�1a�+�02c)� 1
2
(�2+�3a�)2�2

and the component due to the pure indirect e¤ect is:

(RRPIEc � 1) = �

Z
m

E(Ya�mjc)
E(Ya�m�jc)fdP (mja; c)� dP (mja

�; c)g

= �fe��2m���3a�m�+(�2+�3a�)(�0+�1a+�
0
2c)+

1
2
(�2+�3a�)2�2

�e��2m���3a�m�+(�2+�3a�)(�0+�1a
�+�02c)+

1
2
(�2+�3a�)2�2g

= e(�2�1+�3�1a
�)(a�a�) � 1:

Standard errors for these various expressions could be derived using the delta method along
the lines of the derivations in the Online Appendix of VanderWeele and Vansteelandt5 or by
using bootstrapping.

2.3 Binary Outcome, Binary Mediator

Suppose both Y and M were binary, that assumptions (i)-(iv) held, that the outcome
was rare and that the following regressions were correctly speci�ed:

logitfP (Y = 1ja;m; c)g = �0 + �1a+ �2m+ �3am+ �
0
4c

logitfP (M = 1ja; c)g = �0 + �1a+ �
0
2c:

Valeri and VanderWeele16 show that the average total e¤ect, controlled direct e¤ect and the
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average pure indirect e¤ect conditional on C = c are given approximately by:

RRTEc � exp(�1a)f1 + exp(�0 + �1a� + �
0

2c)gf1 + exp(�0 + �1a+ �
0

2c+ �2 + �3a)g
exp(�1a�)f1 + exp(�0 + �1a+ �

0
2c)gf1 + exp(�0 + �1a� + �

0
2c+ �2 + �3a

�)g
RRCDEc (m�) � expf(�1 + �3m)(a� a�)g

RRPIEc � f1 + exp(�0 + �1a� + �02c)gf1 + exp(�0 + �1a+ �02c+ �2 + �3a�)g
f1 + exp(�0 + �1a+ �02c)gf1 + exp(�0 + �1a� + �02c+ �2 + �3a�)g

where the approximations (here and below) hold to the extent that the outcome is rare. We
have that � = E(Ya�m� jc)

E(Ya� jc)
is given by:

� =
E(Ya�m�jc)
E(Ya�jc)

=
E[Y ja�;m�; c]Z

E[Y ja�;m; c]dP (mja�; c)

� exp(�0 + �1a
� + �2m

� + �3a
�m� + �04c)

expf�0 + �1a� + �04cg
Z
expf(�2 + �3a�)mgdP (mja�; c)

=
exp(�2m

� + �3a
�m�)

1+exp(�0+�1a
�+�

0
2c+�2+�3a

�)

1+exp(�0+�1a
�+�

0
2c)

=
e�2m

�+�3a�m�f1 + e�0+�1a�+�
0
2cg

1 + e�0+�1a�+�
0
2c+�2+�3a

�
:

We also have
Z

E[Y ja;m;c]
E[Y ja�;m�;c]dP (mja

y; c)

�
Z
exp(�1a+ �2m+ �3am� �1a� � �2m� � �3a�m�)dP (mjay; c)

= expf�1(a� a�)� �2m� � �3a�m�g
Z
expf(�2 + �3a)mgdP (mjay; c)

=
e�1(a�a

�)��2m���3a�m�

1 + e�0+�1ay+�
0
2c

(1 + e�0+�1a
y+�

0
2c+�2+�3a)

e�1(a�a
�)��2m���3a�m�

(1 + e�0+�1a
y+�

0
2c+�2+�3a)

1 + e�0+�1ay+�
0
2c

:

The reference interaction is thus given by: RRINTrefc (m�) =Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

� E[Y ja;m�; c]

E[Y ja�;m�; c]
+ 1gdP (mja�; c)

=
e�1(a�a

�)��2m���3a�m�
(1 + e�0+�1a

�+�
0
2c+�2+�3a)

1 + e�0+�1a�+�
0
2c

� e
��2m���3a�m�

(1 + e�0+�1a
�+�

0
2c+�2+�3a

�
)

1 + e�0+�1a�+�
0
2c

�e(�1+�3m�)(a�a�) + 1
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and the component due to the reference interaction �RRINTrefc (m�) by:

=
e�1(a�a

�)(1 + e�0+�1a
�+�

0
2c+�2+�3a)

1 + e�0+�1a�+�
0
2c+�2+�3a

�
� 1

�e
�1(a�a�)+�2m�+�3am�

(1 + e�0+�1a
�+�

0
2c)

1 + e�0+�1a�+�
0
2c+�2+�3a

�
e(�1+�3m

�)(a�a�) +
e�2m

�+�3a�m�
(1 + e�0+�1a

�+�
0
2c)

1 + e�0+�1a�+�
0
2c+�2+�3a

�

The mediated interaction is given by: RRINTmedc =Z
f E[Y ja;m; c]
E[Y ja�;m�; c]

� E[Y ja�;m; c]
E[Y ja�;m�; c]

gfdP (mja; c)� dP (mja�; c)g

=
e�1(a�a

�)��2m���3a�m�
(1 + e�0+�1a+�

0
2c+�2+�3a)

1 + e�0+�1a+�
0
2c

� e
��2m���3a�m�

(1 + e�0+�1a+�
0
2c+�2+�3a

�
)

1 + e�0+�1a+�
0
2c

�e
�1(a�a�)��2m���3a�m�

(1 + e�0+�1a
�+�

0
2c+�2+�3a)

1 + e�0+�1a�+�
0
2c

+
e��2m

���3a�m�
(1 + e�0+�1a

�+�
0
2c+�2+�3a

�
)

1 + e�0+�1a�+�
0
2c

and the component due to the mediated interaction �RRINTmedc by:

=
e�1(a�a

�)(1 + e�0+�1a+�
0
2c+�2+�3a)(1 + e�0+�1a

�+�
0
2c)

(1 + e�0+�1a�+�
0
2c+�2+�3a

�)(1 + e�0+�1a+�
0
2c)

� (1 + e
�0+�1a+�

0
2c+�2+�3a

�
)(1 + e�0+�1a

�+�
0
2c)

(1 + e�0+�1a�+�
0
2c+�2+�3a

�)(1 + e�0+�1a+�
0
2c)

�e
�1(a�a�)(1 + e�0+�1a

�+�
0
2c+�2+�3a)

(1 + e�0+�1a�+�
0
2c+�2+�3a

�)
+ 1

We also have that the component due to controlled direct e¤ect is:

�
�
RRCDEc (m�)� 1

�
= �[e(�1+�3m

�)(a�a�) � 1]

=
e�1(a�a

�)+�2m�+�3am�
(1 + e�0+�1a

�+�
0
2c)

1 + e�0+�1a�+�
0
2c+�2+�3a

�
� e

�2m�+�3a�m�
(1 + e�0+�1a

�+�
0
2c)

1 + e�0+�1a�+�
0
2c+�2+�3a

�

and the component due to the pure indirect e¤ect is:

�

Z
m

E(Ya�mjc)
E(Ya�m�jc)fdP (mja; c)� dP (mja

�; c)g

= �

 
e��2m

���3a�m�
(1 + e�0+�1a+�

0
2c+�2+�3a

�
)

1 + e�0+�1a+�
0
2c

� e
��2m���3a�m�

(1 + e�0+�1a
�+�

0
2c+�2+�3a

�
)

1 + e�0+�1a�+�
0
2c

!

=
f1 + exp(�0 + �1a� + �02c)gf1 + exp(�0 + �1a+ �02c+ �2 + �3a�)g
f1 + exp(�0 + �1a+ �02c)gf1 + exp(�0 + �1a� + �02c+ �2 + �3a�)g

� 1:

Standard errors for these expressions could be derived using the delta method along the
lines of the derivations in the Online Appendix of Valeri and VanderWeele16 or by using
bootstrapping.
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3. SAS Code for the 4-Way Decomposition

3.1. Continuous Outcome, Continuous Mediator

To estimate the components of the 4-way decomposition for the e¤ect of exposure A on a
continuous outcome Y with continuous mediator M under the regression models in Section
1.1, one can use the code below. Suppose we have a dataset named �mydata�with outcome
variable �y�, exposure variables �a�and mediator �m�and three covariates �c1�, �c2�and �c3�. If
there were more or fewer covariates the user would have to modify the second, third, fourth,
�fth and tenth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of A (�a1=�and �a0=�) that

are being compared (these are exposure levels 1 and 0 in the code below but this could be
modi�ed for an ordinal or continuous exposure) and the level ofM = m� (�mstar=�) at which
to compute the controlled direct e¤ect and the remainder of the decomposition (it is assumed
in the code below that the mediator is �xed to the value M = m� = 0 but this could be
modi�ed). The user must also input in the third line of the code the value of the covariates
C at which the e¤ects are to be calculated (�cc1=�, �cc2�and �cc3=�). Alternatively the mean
value of these covariates in the sample could be inputted on this line as a summary measure.
The code below on line 3 speci�es these as 10, 10, and 20 which should be altered according
to the covariate values in the application of interest.
The output will include estimates and con�dence intervals for the total e¤ect as well

as the four components of the total e¤ect, i.e. the controlled direct e¤ect, the reference
interaction, the mediated interaction, and the pure indirect e¤ect; the output will also include
estimates and con�dence intervals for the proportion of the total e¤ect due to each of the
four components; and estimates and con�dence intervals for the overall proportion mediated,
the overall proportion due to interaction, and the overall proportion of the e¤ect that would
be eliminated if the mediator M were �xed to the value m�, speci�ed by the user.

proc nlmixed data=mydata;
parms t0=0 t1=0 t2=0 t3=0 tc1=0 tc2=0 tc3=0 b0=0 b1=0 bc1=0 bc2=0 bc3=0 ss_m=1 ss_y=1;
a1=1; a0=0; mstar=0; cc1=10; cc2=10; cc3=20;
mu_y=t0 + t1*A + t2*M + t3*A*M + tc1*C1 + tc2*C2 + tc3*C3;
mu_m =b0 + b1*A + bc1*C1 + bc2*C2 + bc3*C3;
ll_y= -((y-mu_y)**2)/(2*ss_y)-0.5*log(ss_y);
ll_m= -((m-mu_m)**2)/(2*ss_m)-0.5*log(ss_m);
ll_o= ll_m + ll_y;
model Y ~general(ll_o);
bcc = bc1*cc1 + bc2*cc2 + bc3*cc3;
cde = (t1 + t3*mstar)*(a1-a0);
intref = t3*(b0 + b1*a0 + bcc - mstar)*(a1-a0);
intmed = t3*b1*(a1-a0)*(a1-a0);
pie = (t2*b1 + t3*b1*a0)*(a1-a0);
te = cde + intref + intmed + pie;
estimate �Total Effect� te;
estimate �CDE� cde;
estimate �INTref� intref;
estimate �INTmed� intmed;
estimate �PIE� pie;
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estimate �Proportion CDE� cde/te;
estimate �Proportion INTref� intref/te;
estimate �Proportion INTmed� intmed/te;
estimate �Proportion PIE� pie/te;
estimate �Overall Proportion Mediated� (pie+intmed)/te;
estimate �Overall Proportion Attributable to Interaction� (intref+intmed)/te;
estimate �Overall Proportion Eliminated� (intref+intmed+pie)/te;
run;

3.2. Continuous Outcome, Binary Mediator

To estimate the components of the 4-way decomposition for the e¤ect of exposure A on a
continuous outcome Y with binary mediator M under the regression models in Section 1.2,
one can use the code below. The explanation of the code follows that presented in Section
3.1 above.

proc nlmixed data=mydata;
parms t0=0 t1=0 t2=0 t3=0 tc1=0 tc2=0 tc3=0 b0=1 b1=0 bc1=0 bc2=0 bc3=0 ss_y=1;
a1=1; a0=0; mstar=0; cc1=10; cc2=10; cc3=20;
mu_y=t0 + t1*A + t2*M + t3*A*M + tc1*C1 + tc2*C2 + tc3*C3;
p_m=(1+exp(-(b0 + b1*A + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
ll_y= -((y-mu_y)**2)/(2*ss_y)-0.5*log(ss_y);
ll_m= m*log (p_m)+(1-m)*log(1-p_m);
ll_o= ll_m + ll_y;
model Y ~general(ll_o);
bcc = bc1*cc1 + bc2*cc2 + bc3*cc3;
cde = (t1 + t3*mstar)*(a1-a0);
intref = t3*(a1-a0)*(exp(b0+b1*a0+bcc)/(1+exp(b0+b1*a0+bcc)) - mstar);
intmed = t3*(a1-a0)*(exp(b0+b1*a1+bcc)/(1+exp(b0+b1*a1+bcc))-exp(b0+b1*a0+bcc)/(1+exp(b0+b1*a0+bcc)));
pie = (t2 + t3*a0)*(exp(b0+b1*a1+bcc)/(1+exp(b0+b1*a1+bcc))-exp(b0+b1*a0+bcc)/(1+exp(b0+b1*a0+bcc)));
te = cde + intref + intmed + pie;
estimate �Total Effect� te;
estimate �CDE� cde;
estimate �INTref� intref;
estimate �INTmed� intmed;
estimate �PIE� pie;
estimate �Proportion CDE� cde/te;
estimate �Proportion INTref� intref/te;
estimate �Proportion INTmed� intmed/te;
estimate �Proportion PIE� pie/te;
estimate �Overall Proportion Mediated� (pie+intmed)/te;
estimate �Overall Proportion Attributable to Interaction� (intref+intmed)/te;
estimate �Overall Proportion Eliminated� (intref+intmed+pie)/te;
run;

3.3. Binary Outcome, Continuous Mediator

To estimate the components of the 4-way decomposition on the ratio scale for the e¤ect of
exposure A on a binary outcome Y with continuous mediatorM under the regression models
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in Section 2.2, one can use the code below. Suppose we have a dataset named �mydata�with
outcome variable �y�, exposure variables �a�and mediator �m�and three covariates �c1�, �c2�
and �c3�. If there were more or fewer covariates the user would have to modify the second,
third, fourth, �fth and tenth lines of the code below to include these covariates.
The user must input in the third line of code the two levels of A (�a1=�and �a0=�) that

are being compared (these are exposure levels 1 and 0 in the code below but this could be
modi�ed for an ordinal or continuous exposure) and the level ofM = m� (�mstar=�) at which
to compute the controlled direct e¤ect and the remainder of the decomposition (it is assumed
in the code below that the mediator is �xed to the value M = m� = 0 but this could be
modi�ed). The user must also input in the third line of the code the value of the covariates
C at which the e¤ects are to be calculated (�cc1=�, �cc2�and �cc3=�). Alternatively the mean
value of these covariates in the sample could be inputted on this line as a summary measure.
The code below on line 3 speci�es these as 58.57, 1.44, and 0.34 which should be altered
according to the covariate values in the application of interest.
The output will include estimates and con�dence intervals for the total e¤ect risk ratio,

the excess relative risk (i.e. the relative risk minus 1) as well as the four components of
the excess relative risk, i.e. the excess relative risks due to the controlled direct e¤ect, to
the reference interaction, to the mediated interaction, and to the pure indirect e¤ect; the
output will also include estimates and con�dence intervals for the proportion of the excess
relative risk due to each of the four components; and estimates and con�dence intervals for
the overall proportion mediated, the overall proportion due to interaction, and the overall
proportion of the e¤ect that would be eliminated if the mediator M were �xed to the value
m�, speci�ed by the user.

proc nlmixed data=mydata;
parms t0=1 t1=0 t2=0 t3=0 tc1=0 tc2=0 tc3=0 b0=0 b1=0 bc1=0 bc2=0 bc3=0 ss_m=1;
a1=1; a0=0; mstar=0; cc1=58.57; cc2=1.44; cc3=0.34;
p_y=(1+exp(-(t0 + t1*A + t2*M + t3*A*M + tc1*C1 + tc2*C2 + tc3*C3)))**-1;
mu_m =b0 + b1*A + bc1*C1 + bc2*C2 + bc3*C3;
ll_m= -((m-mu_m)**2)/(2*ss_m)-0.5*log(ss_m);
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
ll_o= ll_m + ll_y;
model Y ~general(ll_o);
bcc = bc1*cc1 + bc2*cc2 + bc3*cc3;
CDE_comp = exp( t1*(a1-a0)+t2*mstar + t3*a1*mstar - (t2+t3*a0)*(b0+b1*a0+bcc)

- (1/2)*(t2+t3*a0)*(t2+t3*a0)*ss_m )
- exp(t2*mstar + t3*a0*mstar - (t2+t3*a0)*(b0+b1*a0+bcc) - (1/2)*(t2+t3*a0)*(t2+t3*a0)*ss_m );

INTref_comp = exp((t1+t3*(b0+b1*a0+bcc+t2*ss_m))*(a1-a0) + (1/2)*t3*t3*ss_m*(a1*a1-a0*a0)) - (1.0)
-exp(t1*(a1-a0)+t2*mstar+t3*a1*mstar-(t2+t3*a0)*(b0+b1*a0+bcc)- (1/2)*(t2+t3*a0)*(t2+t3*a0)*ss_m)
+exp(t2*mstar+t3*a0*mstar-(t2+t3*a0)*(b0+b1*a0+bcc)- (1/2)*(t2+t3*a0)*(t2+t3*a0)*ss_m);

INTmed_comp = exp( (t1+t2*b1+t3*(b0+b1*a0+b1*a1+bcc+t2*ss_m))*(a1-a0)
+ (1/2)*t3*t3*ss_m*(a1*a1-a0*a0) )
-exp( (t2*b1+t3*b1*a0)*(a1-a0) ) -exp( (t1+t3*(b0+b1*a0+bcc+t2*ss_m ))*(a1-a0)
+ (1/2)*t3*t3*ss_m*(a1*a1-a0*a0) ) + (1);

PIE_comp = exp( (t2*b1+t3*b1*a0)*(a1-a0) ) - (1);
terr=cde_comp+intref_comp+intmed_comp+pie_comp;
total = exp((t1 + t3*(b0+b1*a0+bcc + t2*ss_m))*(a1-a0)+(1/2)*t3*t3*ss_m*(a1*a1-a0*a0))

*exp((t2*b1+t3*b1*a1)*(a1-a0));
estimate �Total Effect Risk Ratio� total;
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estimate �Total Excess Relative Risk� total-1;
estimate �Excess Relative Risk due to CDE� cde_comp*(total-1)/terr;
estimate �Excess Relative Risk due to INTref� intref_comp*(total-1)/terr;
estimate �Excess Relative Risk due to INTmed� intmed_comp*(total-1)/terr;
estimate �Excess Relative Risk due to PIE� pie_comp*(total-1)/terr;
estimate �Proportion CDE� cde_comp/terr;
estimate �Proportion INTref� intref_comp/terr;
estimate �Proportion INTmed� intmed_comp/terr;
estimate �Proportion PIE� pie_comp/terr;
estimate �Overall Proportion Mediated� (pie_comp+intmed_comp)/terr;
estimate �Overall Proportion Attributable to Interaction� (intref_comp+intmed_comp)/terr;
estimate �Overall Proportion Eliminated� (intref_comp+intmed_comp+pie_comp)/terr;
run;

The code given above is applicable to cohort data. For case-control studies in which
sampling is done on the outcome Y , if the outcome is rare, then the code above can be
adapted by �tting the mediator regression only among the controls. This can be done by
replacing the sixth line of code by: ll_m= -((m-mu_m)**2)/(2*ss_m)-0.5*log(ss_m)*(1-y);

3.4. Binary Outcome, Binary Mediator

To estimate the components of the 4-way decomposition for the e¤ect of exposure A on a
binary outcome Y with binary mediator M under the regression models in Section 2.3, one
can use the code below. The explanation of the code follows that presented in Section 3.3
above.

proc nlmixed data=mydata;
parms t0=1 t1=0 t2=0 t3=0 tc1=0 tc2=0 tc3=0 b0=0 b1=0 bc1=0 bc2=0 bc3=0;
a1=1; a0=0; mstar=0; cc1=58.57; cc2=1.44; cc3=0.34;
p_y=(1+exp(-(t0 + t1*A + t2*M + t3*A*M + tc1*C1 + tc2*C2 + tc3*C3)))**-1;
p_m =(1+exp(-(b0 + b1*A + bc1*C1 + bc2*C2 + bc3*C3)))**-1;
ll_y= y*log (p_y)+(1-y)*log(1-p_y);
ll_m= m*log (p_m)+(1-m)*log(1-p_m);
ll_o= ll_m + ll_y;
model Y ~general(ll_o);
bcc = bc1*cc1 + bc2*cc2 + bc3*cc3;
CDE_comp = exp(t1*(a1-a0)+t2*mstar+t3*a1*mstar)*(1+exp(b0+b1*a0+bcc))/(1+exp(b0+b1*a0+bcc+t2+t3*a0))

- exp(t2*mstar+t3*a0*mstar)*(1+exp(b0+b1*a0+bcc))/(1+exp(b0+b1*a0+bcc+t2+t3*a0));
INTref_comp = exp(t1*(a1-a0))*(1+exp(b0+b1*a0+bcc+t2+t3*a1))/(1+exp(b0+b1*a0+bcc+t2+t3*a0)) - (1)

-exp(t1*(a1-a0)+t2*mstar+t3*a1*mstar)*(1+exp(b0+b1*a0+bcc))*exp((t1+t3*mstar)*(a1-a0))
/(1+exp(b0+b1*a0+bcc+t2+t3*a0))
+ exp(t2*mstar+t3*a0*mstar)*(1+exp(b0+b1*a0+bcc))/(1+exp(b0+b1*a0+bcc+t2+t3*a0));

INTmed_comp = exp(t1*(a1-a0))*(1+exp(b0+b1*a1+bcc+t2+t3*a1))*(1+exp(b0+b1*a0+bcc))
/( (1+exp(b0+b1*a0+bcc+t2+t3*a0))*(1+exp(b0+b1*a1+bcc)) )
- (1+exp(b0+b1*a1+bcc+t2+t3*a0))*(1+exp(b0+b1*a0+bcc)) / ( (1+exp(b0+b1*a0+bcc+t2+t3*a0))
*(1+exp(b0+b1*a1+bcc)) )
- exp(t1*(a1-a0))*(1+exp(b0+b1*a0+bcc+t2+t3*a1))/(1+exp(b0+b1*a0+bcc+t2+t3*a0)) + (1);

PIE_comp = (1+exp(b0+b1*a0+bcc))*(1+exp(b0+b1*a1+bcc+t2+t3*a0)) / ( (1 + exp(b0+b1*a1+bcc))
*(1+exp(b0+b1*a0+bcc+t2+t3*a0)) ) -(1);

terr=cde_comp+intref_comp+intmed_comp+pie_comp;
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total = exp(t1*a1)*(1+exp(b0+b1*a0+bcc))*(1+exp(b0+b1*a1+bcc+t2+t3*a1))
/ ( exp(t1*a0)*(1 + exp(b0+b1*a1+bcc))*(1+exp(b0+b1*a0+bcc+t2+t3*a0)) );

estimate �Total Effect Risk Ratio� total;
estimate �Total Excess Relative Risk� total-1;
estimate �Excess Relative Risk due to CDE� cde_comp*(total-1)/terr;
estimate �Excess Relative Risk due to INTref� intref_comp*(total-1)/terr;
estimate �Excess Relative Risk due to INTmed� intmed_comp*(total-1)/terr;
estimate �Excess Relative Risk due to PIE� pie_comp*(total-1)/terr;
estimate �Proportion CDE� cde_comp/terr;
estimate �Proportion INTref� intref_comp/terr;
estimate �Proportion INTmed� intmed_comp/terr;
estimate �Proportion PIE� pie_comp/terr;
estimate �Overall Proportion Mediated� (pie_comp+intmed_comp)/terr;
estimate �Overall Proportion Attributable to Interaction� (intref_comp+intmed_comp)/terr;
estimate �Overall Proportion Eliminated� (intref_comp+intmed_comp+pie_comp)/terr;
run;

The code given above is applicable to cohort data. For case-control studies in which
sampling is done on the outcome Y , if the outcome is rare, then the code above can be
adapted by �tting the mediator regression only among the controls. This can be done by
replacing the sixth line of code by: ll_m= m*log (p_m)+(1-m)*log(1-p_m)*(1-y);

Decomposition in the Presence of an Exposure-Induced Mediator-Outcome Con-
founder

Consider a setting in which there is a variable L that is a¤ected by exposure A and in turn
a¤ects both M and Y as in Figure 4. Although several of the components of the four-way
decomposition are not identi�ed in this setting, alternative e¤ects which randomly set M to
a value chosen from the distribution of a particular exposure level can be identi�ed. The
discussion here will give a randomized interventional interpretation to Proposition 4 in the
text and extend that result to settings such as Figure 4 in which there is a mediator-outcome
confounder a¤ected by the exposure.
Let Gajc denote a random draw from the distribution of the mediator amongst those

with exposure status a conditional on C = c. Let a and a� be two values of the expo-
sure e.g. for binary exposure we may have a = 1 and a� = 0. As in VanderWeele34,
the e¤ect E(YaGajc jc) � E(YaGa�jc jc) is then the e¤ect on the outcome of randomly assign-
ing an individual who is given the exposure to a value of the mediator from the distri-
bution of the mediator amongst those given exposure versus no exposure, conditional on
covariates; this is a randomized interventional analogue of the pure indirect e¤ect. Next
consider the e¤ect E(YaGa�jc jc) � E(Ya�Ga�jc jc); this is a direct e¤ect comparing exposure
versus no exposure with the mediator in both cases randomly drawn from the distrib-
ution of the population when given the absence of exposure, conditional on covariates;
this is a randomized interventional analogue of the pure direct e¤ect. Finally, the e¤ect
E(YaGajcjc) � E(Ya�Ga�jc jc) compares the expected outcome when having the exposure with
the mediator randomly drawn from the distribution of the population when given the ex-
posure, conditional on covariates to the expected outcome when not having the exposure
with the mediator randomly drawn from the distribution of the population when not ex-
posed, conditional on covariates. With e¤ects thus de�ned we have the decomposition:
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E(YaGajc jc) � E(Ya�Ga�jcjc) = fE(YaGajc jc) � E(YaGa�jcjc)g + fE(YaGa�jc jc) � E(Ya�Ga�jcjc)g
so that the total e¤ect decomposes into the sum of the e¤ect through the mediator and
the direct e¤ect. These e¤ects arise from randomly choosing for each individual a value of
the mediator from the distribution of the mediator amongst all of those with a particular
exposure.
We might further decompose this as follows:

E(YaGajc jc)� E(Ya�Ga�jcjc) = fE(YaGa�jc jc)� E(Ya�Ga�jcjc)g+ fE(Ya�Gajc jc)� E(Ya�Ga�jcjc)g
+[fE(YaGajcjc)� E(Ya�Gajcjc)g � fE(YaGa�jc jc)� E(Ya�Ga�jc jc)g]

where the �rst term in the decomposition is the randomized intervention analogue of the
pure direct e¤ect, the second is the randomized intervention analogue of the pure indirect
e¤ect, and the third is the di¤erence between the randomized intervention analogue of the
total direct e¤ect and the pure direct e¤ect. As shown in VanderWeele34 this third term has
the interpretation of an interaction. We have that:

fE(YaGajc jc)� E(Ya�Gajc jc)g � fE(YaGa�jcjc)� E(Ya�Ga�jcjc)g

=
X

m
E[Yam � Ya�mjGajc = m; c]P (Gajc = mjc)�

X
m
E[Yam � Ya�mjGa�jc = m; c]P (Ga�jc = mjc)

=
X

m
E[Yam � Ya�mjc]P (Ma = mjc)�

X
m
E[Yam � Ya�mjc]P (Ma� = mjc)

=
X

m
E[Yam � Ya�m � Yam� + Ya�m�jc]fP (Ma = mjc)� P (Ma� = mjc)g

where m� is an arbitrary value of M . We have the three-way decomposition given in
VanderWeele.34 Moreover, for the analogue of the pure direct e¤ect we have: fE(YaGa�jcjc)�
E(Ya�Ga�jcjc)g

= E(Yam� � Ya�m�jc) + fE(YaGa�jc jc)� E(Ya�Ga�jc jc)� E(Yam� � Ya�m�jc)g

= E(Yam� � Ya�m�jc) +
X

m
E[Yam � Ya�mjGa�jc = m; c]P (Ga�jc = mjc)� E(Yam� � Ya�m�jc)

= E(Yam� � Ya�m�jc) +
X

m
E[Yam � Ya�m � Yam� + Ya�m�jc]P (Ma� = mjc)

i.e. the analogue of the pure direct e¤ect is the sum of a controlled direct e¤ect and the
reference interaction term,

X
m
E[Yam�Ya�m�Yam�+Ya�m�jc]P (Ma� = mjc). We thus have

a randomized interventional analogue of the four way decomposition.
To identify these e¤ects the following conditions su¢ ce: Assumptions (i) Yam ?? AjC and

(iii) Ma ?? AjC above, that conditional on C there is no unmeasured exposure-outcome or
exposure-mediator confounding, along with an assumption (ii*) that Yam ?? M jfA;C; Lg,
i.e. that conditional on (A;C; L), there is no unmeasured confounding of the mediator-
outcome relationship. These three assumptions would hold in the causal diagram in Figure
4. Under the three assumptions, each of these component are identi�ed from data and it
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follows from the g-formula39 that:

E(Yam� � Ya�m�jc) =
X

l
fE[Y ja; l;m�; c]P (lja; c)� E[Y ja�; l;m�; c]P (lja�; c)g

E(Ya�Gajcjc)� E(Ya�Ga�jc jc) =
X

l;m
E[Y ja�; l;m; c]P (lja�; c)fP (mja; c)� P (mja�; c)g

X
m
E[Yam � Ya�m � Yam� + Ya�m�jc]fP (Ma = mjc)� P (Ma� = mjc)g

=
X

l;m
fE[Y ja; l;m; c]P (lja; c)� E[Y ja�; l;m; c]P (lja�; c)gfP (mja; c)� P (mja�; c)g

and X
m
E[Yam � Ya�m � Yam� + Ya�m�jc]fP (Ma� = mjc)g

=
X

l;m
fE[Y ja; l;m; c]P (lja; c)� E[Y ja�; l;m; c]P (lja�; c)� E[Y ja; l;m�; c]P (lja; c)

+E[Y ja�; l;m�; c]P (lja�; c)gP (mja�; c):

Thus a randomized interventional analogue of the four-way decomposition holds and its com-
ponents can be identi�ed under assumptions (i), (ii*) and (iii). When Figure 3 is in fact the
underlying causal diagram so the L can be chosen to be empty then assumption (ii*) simply
becomes assumption (ii) in the text. And the identi�cation results here simply reduce to
those of Proposition 4 in the text. As in Proposition 4 in the text, the randomized inter-
ventional interpretation does not require the more controversial cross-world independence
assumption, assumption (iv).
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